An integral inequality for capacities.

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On an Integral Inequality

In this article we give different sufficient conditions for inequality (∫ b a f(x)dx )β ≥ ∫ b a f(x)dx to hold.

متن کامل

A new integral for capacities

Anew integral for capacities is introduced and characterized. It differs from the Choquet integral on non-convex capacities. The main feature of the new integral is concavity, whichmight be interpreted as uncertainty aversion. The integral is extended to fuzzy capacities, which assign subjective expected values to random variables (e.g., portfolios) and may assign subjective probability only to...

متن کامل

An inequality for generalized complete elliptic integral

In this paper, we show an elegant inequality involving the ratio of generalized complete elliptic integrals of the first kind and generalize an interesting result of Alzer.

متن کامل

Results of the Chebyshev type inequality for Pseudo-integral

In this paper, some results of the Chebyshev type integral inequality for the pseudo-integral are proven. The obtained results, are related to the measure of a level set of the maximum and the sum of two non-negative integrable functions. Finally, we applied our results  to the case of comonotone functions.

متن کامل

A Version of Favard's Inequality for the Sugeno Integral

In this paper, we  present a version of Favard's inequality for special case and then generalize it for the Sugeno integral in fuzzy measure space $(X,Sigma,mu)$, where $mu$ is the Lebesgue measure. We consider two cases, when our function is concave and when is convex. In addition for illustration of theorems, several examples are given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: MATHEMATICA SCANDINAVICA

سال: 1983

ISSN: 1903-1807,0025-5521

DOI: 10.7146/math.scand.a-12033